
Local Structural Quantile Effects in a Model

with a Nonseparable Control Variable∗

Sung Jae Jun†

First Draft: November 2005

This Version: May 2008

Abstract

I propose an asymptotically normal estimator for a local structural quantile effect in a

nonseparable triangular system (see e.g., Imbens and Newey (2002) and Chesher (2003)). In

order to obtain a practical estimator while keeping the flexibility of the triangular system,

I consider a linear specification that has a control variable included in a nonparametric and

nonseparable manner. In simulation experiments, local instruments and identification pitfalls

are also discussed: the instruments do not affect a particular quantile of the endogenous variable

although they do affect others. It is shown that the proposed method enables inference about

local effects with locally relevant instruments at the expense of the parametric
√

n rate.
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1 Introduction

1 Introduction

I propose a new semiparametric estimator of a model with nonseparable latent variables. The

proposed model is linear in variables with random coefficients, which are unknown functions of the

(uniformly normalized) latent variables V and ε. In the case with a single endogenous regressor,

the model is a triagular system with two equations, where one equation contains V , and the other

equation contains both V and ε. The parameter of interest α(τ1, τ2) is the marginal effect of the

endogenous variable on the outcome variable evaluated at V = τ1 and ε = τ2, where τ1, τ2 ∈ (0, 1)

are chosen by the researcher. I develop a simple two-step estimator, and establish its asymptotic

normal distribution.

This setup is attractive, because it is simple but preserves the flexibility of nonseparable tri-

angular systems (see e.g., Imbens and Newey (2002) and Chesher (2003, 2007)). Unlike fully

nonparametric approaches, including many exogenous covariates does not cause the curse of di-

mensionality. The marginal effect α(V, ε) of the endogenous variable is allowed to depend on both

V and ε. Instruments are local in the sense that they only need to affect the τ1 conditional quantile

of the endogenous variable when the interest is at V = τ1. The cost of this degree of flexibility is

that the proposed estimator converges at a nonparametric rate.

Identification and estimation of heterogeneous marginal effects have been frequently discussed in

the literature. Koenker and Basset (1978) provide the first possibility via quantile regression when

there is no endogeneity. Chernozhukov and Hansen (2005, 2006) propose a way of modeling endo-

geneity in quantile regression models, which can be understood in a generalized method of moments

(GMM) framework. Imbens and Newey (2002) and Chesher (2003, 2007) consider nonseparable tri-

angular models to capture heterogeneity in marginal effects. In particular, Chesher (2003) provides

a set of conditions under which heterogeneous marginal effects are nonparametrically identified in

general triangular models. Although his identification results lead to a straightforward nonparamet-

ric estimation method, it will suffer from the dimensionality issue when many exogenous covariates

are included. Lee (2007) takes a semiparametric approach, where he uses a partially linear quantile

regression method. Ma and Koenker (2006) propose a parametric version of Chesher (2003).
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2 Motivation: Returns to Education and Instrumental Variables

The model proposed in this paper can be compared with Lee (2007) and Ma and Koenker

(2006). In contrast to Ma and Koenker (2006), the approach of this paper is semiparametric in the

sense that the functional form of the random coefficients of the structural equation need not be

specified. Lee (2007) takes a control function approach, where he assumes that the control function

is additively separable. This separability assumption prevents α(τ1, τ2) from being heterogeneous

over τ1, and hence Lee (2007) does not preserve the flexibility of triangular models.

Since the dependence between the endogenous variable and the random coefficients is due to the

fact that they both depend on V , this common latent variable plays the role of a control variable.

It is in fact used as a control variable in the estimation procedure, because the two-step procedure

essectially fixes V at τ1 by kernel smoothing.

Note that the parameter α(τ1, τ2) is a local feature. The reason why this local parameter is

focused on is that identification of the average quantile effect (i.e.,
∫ 1
0 α(s, τ2)ds) requires that

the instruments affect all the distributional points of the endogenous variable, which is a strong

assumption in nonseparable models. In the simulation section, I investigate the possibility of local

instruments by conducting small experiments with the Angrist and Krueger data: the instruments

do not affect a particular conditional quantile of the endogenous variable although they do affect

others. The Monte Carlo results confirm that the proposed estimator only requires local relevance

of instruments.

2 Motivation: Returns to Education and Instrumental Variables

Consider the following wage equation

W = g(s,X,A, U), (1)

where W is a wage, s is a level of education, X is a vector of individual characteristics, A is

unobserved ability, and U is unobserved market fortune. Suppose that g is increasing in U . In-

dividuals choose their level of education to maximize the difference between expected wages given
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2 Motivation: Returns to Education and Instrumental Variables

their characteristics and ability and costs:

S = arg max
s

E
(
g(s,X,A,U)|X, A

)
− C(s, Z,X,A), (2)

where C is the cost of getting a particular level of education, which generally depends on other

characteristics and unobserved ability. Letting h(s,X,A) = E
(
g(s,X,A,U)|X, A

)
(i.e. the expected

wage with s level of education given individual characteristics and ability), the optimal level of

education satisfies the first order condition

hs(S, X, A) = Cs(S, Z, X, A), (3)

which shows that S is a function of Z, X, and A.1 Assume that hss(S, X, A)−Css(S, Z, X, A) < 0 so

that the second order condition is also satisfied. It then follows from the implicit function theorem

that
∂S

∂A
=

CsA(S, Z, X, A)− hsA(S, X, A)
hss(S, X, A)− Css(S, Z, X, A)

> 0 (4)

as long as hsA(S, X, A)−CsA(S, Z, X, A) > 0 (i.e. the net marginal benefit of taking extra education

is increasing in A). Therefore, this setup suggests the following model for returns to education

 W = g(S, X, A,U),

S = S(Z,X, A),
(5)

where g is increasing in U and S is increasing in A. Chesher (2003) pointed out that one of the most

important features of this model is that the returns to education gs(S, X, A,U) generally depends

on A and U . He also showed how useful quantile regression and recursive conditioning is to identify

gs(S, X, a, u) at particular values of A = a and U = u.

Chesher’s identification conditions include a rank condition, which can be written as

∂S(Z,X, a)
∂Z

=
CsA(S, Z, X, a)

hss(S, X, a)− Css(S, Z, X, a)
6= 0, (6)

1Partial derivatives will be denoted by sub–indices.
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2 Motivation: Returns to Education and Instrumental Variables

where the first equality is by the implicit function theorem. Note however that the sensitivity of

S to changes in Z generally depends on the level of unobserved ability. In particular, no economic

theory guarantees that Z satisfies condition (6) for every value of a in support of A. In the sense

of Chesher (2003), Z is a relevant instrument to identify gs(S, X, a, u) only for those values of a

such that CsA(S, Z, X, a) 6= 0. Of course, when CsA(S, Z, X, a) 6= 0 for every value a in support of

A, then gs(S, X, a, u) is identified for every a and u in support of A and U , which would provide

more complete information about returns to education than any other average notion of returns to

education.

Although Chesher (2003) provided a set of conditions to nonparametrically identify gs(S, X, a, u)

for particular values of A = a and U = u, implementation of this model unavoidablely requires

a certain amount of parametrization. The goal of this paper is to semiparametrically implement

model (5) with keeping all the flexibility of this model. The essential flexibility to be preserved

includes that (i) the returns to education gs(S, X, a, u) are allowed to be heterogeneous over both

a and u, and (ii) the degree of relevance of Z as an instrument is allowed to be heterogeneous over

a.

For the second part of flexibility, the data used by Angrist–Kruger (1991) provide an example.2

They used birth–quarters as instrumental variables with the idea that the cost of taking extra

education varies over different birth–quarters due to the compulsory schooling system of the US.

However, since those with lower ability are more likely to be affected by the compulsory schooling

system, this idea naturally suggests that birth–quarters will be more relevant for those with lower

level of ability. This possiblity will be further discussed in section 5.

The parametrization taken in this paper uses random coefficients e.g. W = Sα̃(A,U)+X ′β̃(A,U).3

To simplify presentation, (A,U) will be represented by
(
F−1

A (V ), F−1
U |A(ε|F−1

A (V ))
)
, where V and ε

are two independent uniform random variables. It then leads to a model with random coefficients,

W = Sα(V, ε) + X ′β(V, ε).
2The Angrist and Krueger’s data measure education by the years of schooling, which is discrete. This is an issue

that is not covered by this paper. Chesher (2005) showed that discrete variations in endogenous variables only deliever
partial identification.

3As a matter of specification, W = q1(S)′α̃∗(A, U) + q2(X)′β̃∗(A, U) can be easily considered, where q1(·) and
q2(·) are known functions.
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3 The Model

I propose the following model.

 Y = Dα(V, ε) + X ′β(V, ε)

D = X ′Π1(V ) + Z ′Π2(V ),
(7)

where Y is a scalar outcome variable, D is a scalar endogenous variable, X is a kx dimensional

vector of exogenous covariates, and Z is a kz dimensional vector of instruments. V and ε are

both scalars that represent unobserved components. The model is linear in variables with random

coefficients. The endogenous variable is correlated with the random coefficients of the structural

equation. Since the correlation is due to the fact that V appears twice, the common latent variable

V plays the role of a control variable. Now, the following assumptions are made.

A1(Independence) V and ε are independent, and they are normalized to be uniformly distributed.X

and Z are also assumed to be independent of ε and V .

A2(Monotonicity) τ 7→ Dα(V, τ) + X ′β(V, τ) is strictly increasing in τ ∈ (0, 1).

Similarly, τ 7→ X ′Π1(τ) + Z ′Π2(τ) is strictly increasing in τ ∈ (0, 1).

This model covers the specifications by Lee (2007), Ma and Koenker (2006), and many others.

It allows for two different kinds of heterogeneity, one kind via V and the other via ε. In the

example of returns to schooling, Chesher (2003) calls one heterogeneity from unobserved ability

and the other heterogeneity from unobserved market fortune. Although it is more restrictive than

the fully nonparametric version of Imbens and Newey (2002) and Chesher (2003), it still preserves

many interesting features of triangular systems and it has practical advantage. A completely

nonparametric model suffers from the curse of dimensionality, when many exogenous variables are

included. Although the proposed model is linear in variables, the control variable V is incorporated

in a nonparametric and nonseparable manner, and it preserves all flexiblity of nonseparable models.

The parameter of interest is α(τ1, τ2) for some fixed τ1, τ2 ∈ (0, 1), which are chosen by the

researcher.4 It is the marginal effect of the endogenous variable on the outcome variable evaluated
4In the following discussion, τ1 and τ2 will be regarded as fixed values.
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at V = τ1, ε = τ2. For example, it can be interpreted as the returns to schooling for the person

who has ability of τ1, and has market fortune of τ2. Chesher (2003) provides a set of general

conditions for nonparametric identification of this parameter, which includes continuous variation

of instruments. Instruments are not, however, so rich in practice. Since this is a linear model,

discrete instruments can still deliver identification, as long as the following full rank assumption is

satisfied.

A3(Full Rank) Π2(τ1) has full column rank for the chosen τ1 ∈ (0, 1).

Proposition 1 Suppose that A1, A2, and A3 are satisfied. Let W = [X ′ : Z ′]′. If E(WW ′) has

full rank, then α(τ1, τ2), β(τ1, τ2) are identified.

Proof: See the appendix.

Although proposition 1 is a special case of Chesher (2003, 2007), it exploits the linear quantile

regression specification of the model. Therefore, in contrast to Chesher (2003, 2007), instruments

need not be continuous and discrete instruments are also allowed.

The nature of instrument relevance is local in the sense that the full rank of Π2(τ1) is required

only for a particular τ1 ∈ (0, 1). For example, consider D = ZΦ−1(V ) + F−1(V ), where Z is

non-negative almost surely, Φ−1(s) is the inverse of the standard normal distribution, and F−1(s)

is the inverse of some distribution function. In this case, the instrument is not informative for the

conditional median of D, although it is relevant for the other conditional quantiles. When α(τ1, τ2)

can vary over different τ1, the identification pitfall at τ1 = 0.5 can be a problem in estimating the

average quantile effect
∫ 1
0 α(v, τ2)dv. Instead of estimating the average quantile effect, the local

parameter α(τ1, τ2) will be focused on.

Ma and Koenker (2006) discuss estimation of α(τ1, τ2) and β(τ1, τ2) under additional parametric

assumptions. Alternatively, Lee (2007) considers the case where α(τ1, τ2) and β(τ1, τ2) do not

depend on τ1 except for the intercept and shows that α(·, τ2) can be estimated at the regular
√

n rate. This approach loses the important feature of the triangular system, because it imposes

separability of the control variable. In this paper, the control variable is allowed to be arbitrarily

involved in the structural equation, which implies that the marginal effect of the endogenous variable
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can be arbitrarily heterogeneous over different values of V = τ1. In contrast to Chesher (2003, 2007),

the linear structural equation delivers identification when the instruments are discrete. This model

is substantially simpler than fully nonparametric and nonseparable models, but yet flexibility of

triangular models is well preserved.

For estimation, a local quantile regression approach is taken by using the kernel smoothing idea.

I will write QA|B=b(τ) for the conditional τ quantile of A given B = b. When I do not specify any

particular value of b, I will simply write QA|B(τ). Recall that

Pr
(
Y ≤ Dα(τ1, τ2) + X ′β(τ1, τ2)|D = QD|X,Z(τ1), X, Z

)
= τ2,

because D = QD|X=x,Z=z(τ1), X = x,Z = z is equivalent to V = τ1, X = x, Z = z. The idea is

that Dα(τ1, τ2) + X ′β(τ1, τ2) is the conditional quantile of Y given X, Z for the people whose D is

equal to QD|X,Z(τ1). First, let ρτ (s) = |s|+ (2τ − 1)s be the check function for τ ∈ (0, 1).

Step 1. Estimate the τ1 conditional quantile of D given Wi = [X ′
i : Z ′

i]
′ by Q̂D|Wi

(τ1) = W ′
i Π̂(τ1),

where

Π̂(τ1) = arg min
Π

n∑
i=1

ρτ1(Di −W ′
iΠ).

Step 2. Estimate the parameters of interest by local smoothing quantile regression. Let Ŝn(τ1) =

{1 ≤ i ≤ n : |Di − W ′
i Π̂(τ1)| ≤ hn

2 }, where hn is a bandwidth choice that shrinks to 0. Then

estimate the parameters of interest by

[
α̂(τ1, τ2) : β̂(τ1, τ2)′

]′
= arg min

a,b

∑
i∈Ŝn(τ1)

ρτ2(Yi −Dia−X ′
ib).

The second step is another quantile regression with a subsample of those whose first step

residuals are sufficiently small. This is kernel-smoothing with a uniform kernel 1{|s| ≤ hn
2 }, where

1{·} denotes an indicator function. I focus on the uniform kernel, because regularity conditions for

asymptotics become easier to find. As long as there are enough observations with |Di−Q̂D|Xi,Zi
(τ1)|

small, this approach is intuitively appealing. The resulting estimators will be shown to be consistent

and asymptotically normal under some additional conditions.
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4 Asymptotics

This section discusses the asymptotic properties of the proposed two-step estimators. Let Ri(τ1) =

Di − W ′
iΠ(τ1) and εi(τ1, τ2) = Yi − S′iθ(τ1, τ2), where Wi = [X ′

i, Z ′
i]
′ , Si = [Di, X ′

i]
′ ,Π0 =

Π(τ1) = [Π1(τ1)′, Π2(τ1)]
′ ∈ Ξ, and θ0 = θ(τ1, τ2) = [α(τ1, τ2), β(τ1, τ2)′]

′ ∈ Θ. The data

{(Yi, Di, X
′
i, Z

′
i)}n

i=1 are iid, and the observation index i will be suppressed when generic ran-

dom variables are considered. I will write fA, fA|B to denote the marginal density of A and the

conditional density of A given B, respectively. I make the following assumptions.

Assumption A There is a compact neighborhood N around 0 such that (i) for every δ ∈ N ,

R(τ1) + W ′δ has a marginal density bounded away from 0 at 0 which is twice continuously differ-

entiable, and (ii) supδ∈N |fR(τ1)+W ′δ(t)| ≤ b0(t), supδ∈N |f ′R(τ1)+W ′δ(t)| ≤ b1(t) and

supδ∈N |f ′′R(τ1)+W ′δ(t)| ≤ b2(t) for some continuous functions b0(t), b1(t) and b2(t).

Assumption B ε(τ1, τ2) has a conditional density at 0 given R(τ1) and S.

Assumptions A and B require that Y and D are continuous random variables but they do not

require continuous instruments. Assumption A says that R(τ1) = D−W ′Π0 has a marginal density

bounded away from 0 at 0 and so do its small perturbations R(τ1) + W ′δ. The assumptions that

Y and D are continuously distributed are crucial but the other assumptions are for regularity.

Note also that assumption A ensures that there are sufficiently many observations in {1 ≤ i ≤ n :

|Ri(τ1)| ≤ δ} for any δ > 0 as n increases.

Note that two sets of conditional moment restrictions are available: Pr(Di ≤ W ′
iΠ0|Wi) = τ1

Pr(Yi ≤ S′iθ0|Si, Ri(τ1) = 0) = τ2,
(8)

which implies  E
(
Wi(1{Di ≤ W ′

iΠ0} − τ1)
)

= 0

E
(
Si(1{Yi ≤ S′iθ0} − τ2)|Ri(τ1) = 0

)
fR(τ1)(0) = 0.

(9)
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Since Di is a function of Xi, Zi conditional on Ri(τ1) = 0, E
(
Si(1{Yi ≤ S′iθ0}−τ2)|Ri(τ1) = 0

)
= 0

obtains by integrating over the distribution of Xi, Zi.5 Although these are not the only moment

conditions implied by (8), I do not address the issues of efficiency in this paper.

The proposed estimators can be understood in a generalized method of moments (GMM) frame-

work based on the moment conditions (9) (see e.g., Pakes and Pollard (1989), Newey and McFadden

(1994)). In particular, the (quasi) first order conditions of the proposed estimator can be written

as


1
n

∑n
i=1 Wi(1{Di ≤ W ′

i Π̂(τ1)} − τ1) = op( 1√
n
)

1
nhn

∑n
i=1 Si(1{Yi ≤ S′iθ̂(τ1, τ2)} − τ2)1{|Di −W ′

i Π̂(τ1)| ≤ hn
2 } = op( 1√

nhn
),

(10)

where hn is a bandwidth choice with hn ↓ 0, nhn →∞. It is in fact easy to show that

Mn(Π, θ) =

 M1n(Π)

M2n(Π, θ)

 =

 1
n

∑n
i=1 Wi(1{Di ≤ W ′

iΠ} − τ1)

1
nhn

∑n
i=1 Si(1{Yi ≤ S′iθ} − τ2)1{|Di −W ′

iΠ| ≤ hn
2 }


p→ M(Π, θ) =

 M1(Π)

M2(Π, θ)

 =

 E
(
Wi(1{Di ≤ W ′

iΠ} − τ1)
)

E
(
Si(1{Yi ≤ S′iθ} − τ2)|D −W ′Π = 0

)
fD−W ′Π(0)


for each Π and θ. The only complication is nondifferentiability of Mn due to the indicators, and

the nonparametric convergence rate of the bottom part. Note also that we only need to assume

that D − W ′Π has a marginal density when Π belongs to a neighborhood of Π0, because Π0 is

consistently estimated from M1(Π0) = 0.

Assumption C The parameters Π0 and θ0 uniquely solve M(Π, θ) = 0, and they are in the interior

of the compact parameter space Ξ×Θ.

Assumption D E
(
Mn(Π, θ)

)
and M(Π, θ) are continuous in (Π, θ) ∈ Ξ × Θ. It is also assumed

that M(Π, θ) is twice differentiable at (Π0, θ0).
5When R(τ1) has a density conditional on Yi and Si, this conditional expectation can be written as E

(
Si(1{Yi ≤

S′
iθ0} − τ2)fR(τ1)|Y,S(0|Yi, Si)

)
= 0. See the appendix.
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Assumption E E
(
WiW

′
ifR(τ1)|W (0|Wi)

)
and E

(
SiS

′
ifε(τ1,τ1)|R(τ1),S(0|Ri(τ1), Si)|Ri(τ1) = 0

)
have

full column ranks.

Assumption F E
(
||Wi|| sups fR(τ1)|W (s|Wi)

)
< ∞.

Assumption G ϕ(θ, δ, r) = E
(
Si(1{Yi ≤ S′iθ} − τ2)|Ri(τ1) − W ′

iδ = r
)

is twice continuously

differentiable with respect to r. Moreover, ∂ϕ(θ,δ,r)
∂r and ∂2ϕ(θ,δ,r)

∂r2 are continuous in θ ∈ Θ and

δ ∈ N .

Assumption H Let wij and sit be generic elements of Wi and Si. For some δ > 0, E(|wij |2+δ) <

∞, and E
(
|sit|2+δ|R(τ1) = 0

)
< ∞.

Assumption C ensures global identification of (Π0, θ0), which is satisfied when the conditional

density of R(τ1) given W and the conditional density of ε(τ1, τ2) given W and R(τ1) = 0 are

bounded away from 0 at 0; see the appendix.

Assumption D is standard. Differentiability of M(Π, θ) is guaranteed e.g. when T (Di,Wi) =

E
(
Si(1{ε(τ1, τ2) ≤ 0}−τ2)|Di,Wi

)
is diffrentiable with respect to Di. Assumption E is the standard

rank condition but it is local. In particular, note that the full rank assumption fails to hold when

Π2(τ1) is equal to 0.6 The rank condition is therefore that the instruments are relevant for the τ1

conditional quantile of D given W . Assumption H is needed for a central limit theorem. Since

kernel smoothing is used, bias is a problem which I address by undersmoothing.

Assumption I hn ∝ n−κ with 1
5 < κ < 1

2(1+δ) for some δ > 0.

Lemma 1 Let Ξ0 = Π(τ1) + N . Under assumptions A-B, Υn,hn

(
E

(
Mn(Π, θ)

)
− M(Π, θ)

)
= 0

O(
√

nhnh2
n)

 uniformly over Ξ0×Θ, where Υn,hn =

 √
nIkx+kz 0

0
√

nhnI1+kx

. In particular,

assumption I ensures Υn,hn

(
E

(
Mn(Π, θ)

)
−M(Π, θ)

)
= o(1) uniformly over Ξ0 ×Θ.

Proof: See the appendix.

Now, I state the main theorem.
6Note that given R(τ1) = 0, S′ = [D : X ′] = [X ′Π1(τ1) + Z′Π2(τ1) : X ′].
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Theorem 1 Under assumptions A-I,

 √
n
([

Π̂1(τ1)′, Π̂2(τ1)′
]′
− [Π1(τ1)′, Π2(τ2)′]

′)
√

nhn

([
α̂(τ1, τ2), β̂(τ1, τ2)′

]′
− [α(τ1, τ2), β(τ1, τ2)′]

′)


= −

 Γ11(τ1)−1 0

0 Γ22(τ1, τ2)−1

Υn,hnMn(Π0, θ0) + op(1),

where Γ11(τ1) = E
(
WiW

′
ifR(τ1)|W (0|Wi)

)
and Γ22(τ1, τ2) = E

(
SiS

′
ifε(τ1,τ2)|R(τ1),S(0|Ri(τ1), Si)|Ri(τ1) =

0
)
fR(τ1)(0). In particular,

√
nhn

([
α̂(τ1, τ2), β̂(τ1, τ2)′

]′
−

[
α(τ1, τ2), β(τ1, τ2)′

]′)
d→ N

(
0,Γ22(τ1, τ2)−1V22(τ1, τ2)Γ22(τ1, τ2)−1

)
,

as n →∞, where V22(τ1, τ2) = τ2(1− τ2)E(SiS
′
i|Ri(τ1) = 0)fR(τ1)(0).

Proof: See the appendix.

The center of zero in the asymptotic distribution comes from undersmoothing as most of non-

parametric estimators. Since the first–stage estimator has the faster parametric rate of convergence,

it does not affect the asymptotic variance of the second–stage estimator. The linear expansion of
√

nhn

(
θ̂(τ1, τ2) − θ0(τ1, τ2)

)
also suggests joint normality of the estimators with different sets of

quantiles.

Corollary 1 Suppose that the conditions for theorem 1 are satisfied for {(τ1, τ2), (τ̃1, τ̃2)}. Then,

 √
nhn

([
α̂(τ1, τ2), β̂(τ1, τ2)′

]′
− [α(τ1, τ2), β(τ1, τ2)′]

′)
√

nhn

([
α̂(τ̃1, τ̃2), β̂(τ̃1, τ̃2)′

]′
− [α(τ̃1, τ̃2), β(τ̃1, τ̃2)′]

′)


d→ N

0,

 Γ22(τ1, τ2)−1V22(τ1, τ2)Γ22(τ1, τ2)−1 COV (τ1, τ̃1, τ2, τ̃2)

COV (τ1, τ̃1, τ2, τ̃2)′ Γ22(τ̃1, τ̃2)−1V22(τ̃1, τ̃2)Γ22(τ̃1, τ̃2)−1


 ,

where COV (τ1, τ1, τ2, τ̃2) = (min(τ2, τ̃2) − τ2τ̃2)Γ22(τ1, τ2)−1E(SiS
′
i|Ri(τ1) = 0)Γ22(τ1, τ̃2)−1 and
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COV (τ1, τ̃1, τ2, τ̃2) = 0 if τ1 6= τ̃1.

Proof: When τ1 = τ̃1, it directly follows from the asymptotic expansion of theorem 1. When

τ1 6= τ̃1, note that 1{|Di −W ′
iΠ(τ1)| ≤ hn

2 }1{|Di −W ′
iΠ(τ̃1)| ≤ hn

2 } = 0 for sufficiently large n. ���

Estimation of Γ22(τ1, τ2) and V22(τ1, τ2) can be done by various nonparametric methods (see

e.g., Koenker (2005), Powell (1986)), although it could be more difficult to estimate Γ22(τ1, τ2).

The following proposition shows one possibility.

Proposition 2 Let k(·) be a kernel such that

(i) supv|k(v)| < ∞,
∫
|k(v)|dv < ∞,

∫
k(v)2dv < ∞,

∫
k(v)dv = 1, and

∫
|k(v)||v|dv < ∞.

(ii) k(·) is twice differentiable, and S = {v ∈ R : |k′(v)| > 0, k′′(v) = 0} is finite.

Suppose that εi(τ1, τ2) and Ri(τ1) have a joint density conditional on Si such that

supt,s |Djfε(τ1,τ2),R(τ1)(t, s|Si)| ≤ φ(Si) for some φ(Si) with E
(
||Si||φ(Si)

)
< ∞, where Dj denotes

the derivative with respect to the jth argument. Let b1n ↓ 0, b2n ↓ 0 such that if Wi has bounded

support,
√

nb1n →∞ and
√

nhnb2n →∞, otherwise
√

nb2
1n →∞ and

√
nhnb2

2n →∞. Then,

V̂22(τ1, τ2) =
1

nb1n

n∑
i=1

SiS
′
ik

(−R̂i(τ1)
b1n

)
τ2(1− τ2)

p→ V22(τ1, τ2),

Γ̂22(τ1, τ2) =
1

nb2
2n

n∑
i=1

SiS
′
ik

(−R̂i(τ1)
b2n

)
k
(−ε̂i(τ1, τ2)

b2n

) p→ Γ22(τ1, τ2).

Proof: See the appendix.

Existence of the joint conditional density of ε(τ1, τ2) and R(τ1) given S requires that there

is at least one cotinuous instrument with non–zero coefficient. This assumption is made for the

conveience of the proof, but it seems possible to be relaxed as long as R(τ1) has a marginal density.

Condition (i) is standard in kernel estimation. Condition (ii) assumes smooth differentiable kernels,

which is satisfied by most of commonly used kernels. When Wi does not have bounded support but

the bandwidth choices b1n and b2n satisfy the stronger requirements, we do not need condition (ii).

As k(·) has higher order derivatives, the requirements for b1n and b2n with unbounded support of Wi

become closer to the requirements with bounded support of Wi. The requirement of
√

nhnb2n →∞

shows that estimation of Γ(τ1, τ2) can be quite difficult in practice. Variance estimation of the
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5 Experiments using the Angrist and Krueger Data

proposed estimators need further investigation.

5 Experiments using the Angrist and Krueger Data

In this section, I conduct small experiments with the Angrist-Krueger data (see e.g., Angrist and

Krueger (1991), Angrist, Imbens, and Krueger (1999)). Returns to schooling is a leading example

that shows how useful triangular models are. One of the most interesting features of triangular

models is that it can provide a more complete picture about (random and heterogeneous) marginal

effects by investigating two different quantile points. However, even when instruments are not

relevant for all different distributional points, analysing a particular quantile of the endogenous

variable is still possible; the method proposed in this paper requires that the instruments be relevant

for a particular conditional quantile of the endogenous variable. This is a substantially weaker

assumption than the traditional rank condition required in simultaneous equations models, where

the instruments must affect the conditional mean of the endogenous variable. The Angrist-Krueger

data is well-known to suffer from the issue of weak instruments while the sample size is extremely

large; n = 329, 509. The experiments of this section investigate the possibility of local relevance of

those weak instruments.

One limitation of triangular models employed in this paper is that the assumption of strong

monotonicity is required for point-identification (see e.g., Chesher (2003, 2005, 2007)). Since the

education variable of the Angrist-Krueger data is observed as the years of schooling, it is a discrete

variable, and it clearly does not satisfy the monotonicity assumption. However, since the purpose

of this section is not in a rigorous empirical analysis but in investigating potential possibilities and

providing an example, I simply pretend that the education variable is continuous by adding a small

amount of random noise.7

I considered contaminated education variables which were obtained by adding a small amount of

random noise generated from N(0, σ2) with σ ∈ {0.01, 0.02, 0.03, 0.04, 0.05} to the original education

variable of the Angsrist-Krueger data. I then ran quantile regression of the simulated education
7Florens, Heckman, Meghir, and Vytlacil (2008) also used the example of returns to education to motivate their

analysis, where they also considered continuous endogenous treatments.
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5 Experiments using the Angrist and Krueger Data

variables on 10 dummy variables indicating the years of birth and 30 instruments of the birth-

quarters interacted with the birth-years.

Table I shows the p-values of the coeffcients of those 30 instruments for variaous quantiles.

Interestingly, those coefficients are quite significant for most quantiles, but not for e.g., 85% quantile.

I tried different values of the standard deviations of the random noises, but the coefficients of those

instruments for the 85% conditional quantile were insignificant at 5% levels in most cases. In

addition, although it is not reported in table I, the Wald statistic testing all the 30 instruments are

irrelevant was largest for the 20% conditional quantile in all five cases.

The fact that the instruments are most relevant for τ1 = 0.20 needs some comments. Jun (2008)

analyzed the Angrist–Krueger data within the framework of the instrumental quantile model (the

IV quantile model hereafter) proposed by Chernozhukov and Hansen (2006). In particular, Jun

(2008) cast the IV quantile model in a general GMM framework with a moment condition

E
(
[X ′ Z ′]′

(
1{Y ≤ Dα(τ) + X ′β(τ)} − τ

))
= 0, (11)

where Y is the log wage, D is the years of schooling, X is 10 dummies indicating the birth years, and

Z contains the 30 instruments.8 He then constructed 95% confidence intervals for α(τ) with various

choices of τ without assuming that they are identified. I here recall that his confidence intervals

were extremely wide for small values of τ while those for upper quantiles were relatively tighter.9

The fact that the instruments are weaker for lower quantiles in model (11) shows how different the

IV quantile model is from the triangular model considered in this paper. The triangular model is

a mutiple equations model, where different (conditional) quantiles of D and different (conditional)

quantiles of Y are separately treated and they can be separately interpreted. However, the IV

quantile model of Cherhozhukov and Hansen (2006) is a single GMM model, where quantiles of

D are irrelevant but quantiles of (counterfactual) outcomes are compared (see Chernozhukov and
8Understanding the IV quantile model in the GMM framework is a common view. For example, Chernozhukov and

Hong (2003) considered the same moment condition and they studied the Laplace–type estimators that are defined
by using the quasi–Bayesian posteriors.

9For example, the interval for α(0.20) was roughly between 0.075 and 0.625 while the interval for α(0.85) was
between 0.025 and 0.125.
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Hansen (2006) for more precise interpretation). Note also that the IV quantile model (11) does

not require that D be a continuous variable, because conditional quantiles of D are irrelevant for

anaylses.

Figure I shows the point estimates of α(τ1, τ2) with σ ∈ {0.01, 0.02}. Although α̂(τ1, τ2)

would provide more complete information about the marginal effects if there were no issue of weak

instruments, it is clear that it is not the case; since the first–stage Wald tests for τ1 = 0.85 do not

even reject the null of irrelevant instruments, there is a clear problem due to weak instruments even

in these localized estimates. Note however that some values of τ1 still strongly reject the null of

irrelevant instruments in the first stage. Figure I also illustrates the point estimates of α(0.20, τ2)

and their 95% confidence intervals, where τ1 = 0.20 is such that the first–stage Wald statistic is

largest among other values of τ1.

Although these are experimental results based on contaminated education, they provide another

possibility that is comparable to Chernozhukov and Hansen (2006) and Jun (2008). Although the

IV quantile model does allow a discrete endogenous variable, it is a single GMM model, and it is

not straightforward to assess instruments. The (triangular) model of Chesher (2003) does not allow

a discrete endogenous variable, but it provide further localized inference and assessing instruments

is more straightforward; in this paper, I considered a semiparametric implementation of Chesher

(2003). Several methods have been proposed in the literature to make triangular models more

practical. However, they are either fully parametric or separable in control variables (see e.g. Ma

and Koenker (2006) and Lee (2007)). The method proposed in this paper provides a simple yet

sufficiently flexible way of utilizing triagular models.

6 Simulations: Local Instruments and Identification Pitfalls

In this section, I consider three different data generating processes for Monte Carlo experiments.

In the followings, N−1(s : µ, σ2) denotes the inverse of the distribution function of N(µ, σ2). The

included exogenous variables, X1 and X2 are independently generated from N(0, 1) and N(2, 4),

respectively for each design. (β1, β2, γ1, γ2, γ3) is set to be (1, 1, 1, 1, 5). The parameter of interest
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6 Simulations: Local Instruments and Identification Pitfalls

is α(τ1, τ2), the marginal effect of D on Y for those whose ε and V are at τ2 and τ1, respectively.

The true value for each design is given by α(τ1, τ2) = 1 − 3τ1 + τ1 + exp(τ1). In the following

experiments, τ2 = 0.5 is used as the various values of τ1 are tried.

DGP1

 Y = D(1− 3V + V 2 + exp(V )) + X1β1 + X2β2 + N−1(ε : 0, 1)

D = Z1π1 + Z2π2 + X1γ1 + X2γ2 + γ3 + N−1(V : 0, 1),

where Z1 ∼ N(0, 1), Z2 ∼ N(0, 1) and (π1, π2) = (1, 1).

DGP2

 Y = D(1− 3V + V 2 + exp(V )) + X1β1 + X2β2 + N−1(ε : 0, 1)

D = Z1π + Z2N
−1(V : 1, 4) + X1γ1 + X2γ2 + γ3 + N−1(V : 0, 1),

where Z1 ∼ N(0, 1), Z2 ∼ |N(0, 1)| and π = 0.01.

DGP3

 Y = D(1− 3V + V 2 + exp(V )) + X1β1 + X2β2 + N−1(ε : 0, 1)

D = Z3N
−1(V : 1, 4) + X1γ1 + X2γ2 + γ3 + N−1(V : 0, 1),

where Z3 ∼ Bernoulli(1
2).

DGP1 is the case where two instruments are globally valid with homosckedastistic independent

error. DGP2 has two instruments; one is weak, and the other is local. Since N−1(0.3 : 1, 4) ≈ 0.048,

DGP2 suffers from weak identification when τ1 is chosen to be around 30%. However, when τ1 is

far from 30%, Z2 is a relevant instrument, and the parameter of interest is identified. Lastly, DGP3

is the case where there is one binary instrument that can be weak for a particular quantile.

For the sample size, I used n ∈ {3, 000, 5, 000, 8, 000}. For the bandwidth, hn = IQR · n−
1
3

was used except for Figures II-1 and II-2, where IQR is the interquantile range of the first–stage

quantile regression residuals. For Monte Carlo, 1, 000 replications were made.

Tables II-1 through II-3 show the Monte Carlo results from DGP1, DGP2, and DGP3, re-

spectively. For DGP1, RMSEs are small for all the quantile effects. DGP2 and DGP3 are more

interesting. Since the instruments are only local in the sense that they are relevant for some quan-

tiles but not for others, RMSEs remain big when τ1 is close to 30%. In spite of the identification

difficulty around τ1 = 30%, the instruments are still informative for other quantile effects and

RMSEs are reasonably small.

Figures II-1 and II-2 show the sensitivity of RMSEs to different bandwidth choices. Using

n = 5, 000 and hn = κ · n−1/3, κ ∈ {0.5, 1.0, 1.5, · · · , 4.0, 4.5, 5.0, 8.0, 10.0, 15.0} were considered,

which led to hn ∈ [0.03, 0.88]. As the figures show, RMSEs are quite stable in all cases within wide
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ranges of bandwidth.

Figure III illustrates the rejection rates of the t-statistics testing the truth with the nominal

size 5% and n = 8000. To estimate the standard errors, the crude kernel estimators suggested in

proposition 2 were used using the standard normal density as a kernel. In contrast to the other

quantile effects, the rejection rates around τ1 = 30% in DGP2, DGP3 are far from 5%.

The size distortions of DGP2 and DGP3 around τ1 = 30% are not surprising in view of the

identification difficulty: the instruments are not informative for the quantile effects around τ1 =

30%. This is interesting because it suggests that individual heterogeneity can cause instruments

to be only locally relevant and yet the local instruments can still be exploited by focusing on a

particular local effect. To be more concrete, the densities of the t-statistics are estimated from

Monte Carlo and some of them are shown in Figure IV. Not surprisingly, when τ1 = 30% in DGP2

and DGP3, the densities of the t-statistics are far from the normal density.

Lastly, Figure V shows examples of 95% confidence intervals computed by the normal approx-

imation. I simply generated three sets of artificial data from DGP1, DGP2, and DGP3. Then,

95% condidence intervals were computed for various values of τ1 with fixing τ2 = 0.5. Again, the

confidence bands from DGP2, DGP3 do not cover the truth when τ1 is around 30%. However, they

do cover the truth when τ1 is far from 30%.

7 Concluding Remarks

I proposed a two-step estimator in a nonseparable triangular system. In order to obtain a practical

estimator while preserving the flexibility of the triangular system, I considered a linear-in-variables

specification that has a control variable included in a nonparametric and nonseparable manner.

This is interesting because (1) in contrast to Buchinsky (1994), Lee (2007), Chernozhukov and

Hansen (2005, 2006) and Jun (2008), the marginal effects are allowed to be heterogeneous over two

different quantile points, and (2) inference can be focused on a particular quantile of the endogenous

variable when the instruments are relevant for the particular quantile of the endegenous variable

(see also Ma and Koenker (2006)).
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The integrated quantile effect (or the average quantile effect:
∫ 1
0 α(v, τ2)dv) looks interesting

too. It can be used as a summary of all the local parameters, and it seems to be possible to recover

the regular
√

n convergence rate.10 However, when the instruments are “weak” for a particular

quantile, the inference on the average quantile effect can be quite misleading. Instead, the method

proposed in this paper focuses on a particular quantile of the endogenous variable at the expense

of the parametric
√

n rate. Although there are many methods to estimate certain average effects

without estimating the entire local function, they are based on a set of alternative assumptions.

For example, two–stage least squares estimators requires that the instruments affect the conditional

mean of the endogenous variable, which is quite different from the local quantile relevance condition.

See also Florens, Heckman, Meghir, and Vytlacil (2008). As the experiments with the Angrist and

Krueger data show, instruments can be locally relevant for some quantiles without being so strong in

the conventional mean sense. Therefore, the proposed method can also be considered an alternative

approach to the weak instrument problem.

There are several limitations. First, the monotonicity assumption requires that the endogenous

variable be a continuous random variable. This can be restrictive in practice. Chesher (2005)

discusses a set identification result with a discrete endogenous variable, which is worth further study.

Second, the estimation of the variance can be tough in practice. Comparing several methods of

variance estimation such as kernel, k-nearest-neighbor, and bootstrap is worth studying. Testing the

location of the local parameter without assuming its identification is another interesting question.

It is also left for the future research.

10In standard linear quantile regression models, integrating regression quantiles to obtain a location parameter has
been considered by e.g. Portnoy and Koenker (1989).
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B The Moment Condition and Global Identification

A Proof of Proposition 1

Let Π0 = [Π1(τ1)′ : Π2(τ1)′]
′. First, note that QD|W (τ1) = W ′Π0. Multiplying W to both sides

and taking expectations yields E(WW ′)Π0 = E
(
WQD|W (τ1)

)
. Therefore, Π0 is identified by

E(WW ′)−1E
(
WQD|W (τ1)

)
. Now, note that

Pr
(
Y ≤ QD|W (τ1)α(τ1, τ2) + X ′β(τ1, τ2)

∣∣D = QD|W (τ1),W
)

= Pr
(
Y ≤ Dα(τ1, τ2) + X ′β(τ1, τ2)

∣∣D = QD|W (τ1),W
)

= Pr
(
Y ≤ Dα(V, τ2) + X ′β(V, τ2)

∣∣V = τ1,W
)

= Pr(ε ≤ τ2

∣∣V = τ1,W ) = Pr(ε ≤ τ2) = τ2,

because D = QD|W=w(τ1),W = w is equivalent to V = τ1,W = w due to the strong monotonic-

ity.11 Note here that independence between V and ε is used only for the last equality, which local

independence is in fact sufficient for. Now, note that

QY |D=QD|W (τ1),W (τ2) = QD|W (τ1)α(τ1, τ2) + X ′β(τ1, τ2)

= X ′(Π1(τ1)α(τ1, τ2) + β(τ1, τ2)
)

+ Z ′Π2(τ1)α(τ1, τ2).

Multiplying W to both sides and taking expections shows that

[Π1(τ1)′α(τ1, τ2) + β(τ1, τ2)′, Π2(τ1)′α(τ1, τ2)]
′ is identified by E(WW ′)−1E

(
WQY |D=QD|W (τ1),W (τ2)

)
.

Therefore, A3 results in identification of α(τ1, τ2) and β(τ1, τ2). ���

B The Moment Condition and Global Identification

Since E
(
ρτ (Di−W ′

iΠ)
)

is weakly convex, solutions to E
(
Wi(1{Di ≤ W ′

iΠ}−τ1)
)

= 0 are minimizers

of E
(
ρτ1(Di −W ′

iΠ)
)
. Therefore, in order to show that Π0 uniquely solves E

(
Wi(1{Di ≤ W ′

iΠ} −

τ1)
)

= 0, it suffices to show that Π0 is the unique minimizer. Since E
(
ρτ (Di − W ′

iΠ)
)

is weakly

convex, its minimum is unique when its Hessian at the minimum is positive definite. Now, note

that the Hessian at Π0 is given by E
(
WiW

′
ifR(τ1)|W (0|Wi)

)
, which is clearly positive definite when

11For the sake of simplicity, the qualifier of “almost surely” will be suppressed throughout the paper when it is
clear from the context.
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C Proof of Lemma 1

fR(τ1)|W (0|Wi) is bounded away from 0.

Given R(τ1) = 0, D is only a function of W . Therefore, θ0 will solve

E
(
Si(1{Yi ≤ S′iθ} − τ2)|Ri(τ1) = 0

)
= 0. (12)

Following the same reasoning as before, θ0 will be the unique solution, if it uniquely minimizes

E
(
ρτ2(Yi − S′iθ)|Ri(τ1) = 0

)
. Now, note that its Hessian at θ0 will be given by

E
(
SiS

′
ifε(τ1,τ2)(0|Wi, Ri(τ1) = 0)|Ri(τ1) = 0

)
. Therefore, if the conditional density of ε(τ1, τ2) at 0

given Wi, Ri(τ1) = 0 is bounded away from 0, then θ0 will be the unique solution to equation (12).

���

Remark: Note that the moment condition (12) can be expressed in a more common but equivalent

form when R(τ1) has a density given Y and S; this is the case when we have continuous instruments

with non–zero coefficient at τ1. Note that

E
(
Si(1{Yi ≤ S′iθ} − τ2)|Ri(τ1) = 0

)
=

∫
s(1{y ≤ s′θ}−τ2)fY,S|R(τ1)(y, s|0)dµ(y, s) =

1
fR(τ1)(0)

∫
s(1{y ≤ s′θ}−τ2)fY,S,R(τ1)(y, s, 0)dµ(y, s)

=
1

fR(τ1)(0)

∫
s(1{y ≤ s′θ} − τ2)fR(τ1)|Y,S(0|y, s)fY,S(y, s)dµ(y, s)

=
1

fR(τ1)(0)
E

(
Si(1{Yi ≤ S′iθ} − τ2)fR(τ1)|Y,S(0|Yi, Si)

)
,

where µ is the underlying measure.

C Proof of Lemma 1

Note that

Υn,hn

(
E

(
Mn(Π, θ)

)
−M(Π, θ)

)
=

 0

Bn(Π, θ)

 ,
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D Proof of Theorem 1

where

Bn(Π, θ) =
√

nhn

( 1
hn

E
(
Si(1{Yi ≤ Siθ} − τ2)1{|Di −WiΠ| ≤

hn

2
}
)

− E
(
Si(1{Yi ≤ Siθ} − τ2)|Ri(τ1)−W ′

iδ = 0
)
fRi(τ1)−W ′δ(0)

)

for δ = Π − Π0 ∈ N . Let ϕ(θ, δ, r) = E
(
Si(1{Yi ≤ Siθ} − τ2)|Ri(τ1) − W ′

iδ = r
)
, and it follows

from the law of iterated expectations and the change–of–variables that

Bn(Π, θ) =
√

nhn

∫ 1/2

−1/2
ϕ(θ, δ, thn)fR(τ1)−W ′δ(thn)− ϕ(θ, δ, 0)fR(τ1)−W ′δ(0)dt

=
√

nhnh2
n

2

∫ 1/2

−1/2

∂2ϕ(θ, δ, s)fR(τ1)−W ′δ(s)
∂s2

∣∣
s=s̄

t2dt,

where s̄ is between 0 and thn. Therefore, for every θ ∈ Θ and Π ∈ Π0 +N ,

||Bn(Π, θ)|| ≤
√

nhnh2
n

(
sup

−1/2≤r≤1/2
||∂

2ϕ(θ, δ, r)
∂r2

||b0(r) + 2 sup
−1/2≤r≤1/2

||∂ϕ(θ, δ, r)
∂r

||b1(r)

+ sup
−1/2≤r≤1/2

||ϕ(θ, δ, r)||b2(r)
) ∫ 1/2

−1/2
t2dt. (13)

It then follows that supΠ∈Π0+N , θ∈Θ ||Bn(Π, θ)|| = O(
√

nhnh2
n) from compactness of Θ × N and

continuity of the right–hand side of (13). ���

D Proof of Theorem 1

In this section, I provide the proof of theorem 1. For the sake of convenience, I splitted the theorem

into the consistency part (lemmas 2 and 8) and the normality part (proposition 3). In the following

discussion, I will write M1(Π) and M2(Π, θ) to denote the partitions of M(Π, θ); their sample

analogs will be denoted by M1n(Π) and M2n(Π, θ), respectively.

Lemma 2
√

n||Π̂(τ1)−Π(τ1)|| = Op(1).

Proof: It follows from the fact that Π̂(τ1) is the standard linear quantile regression estimator. ���
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Lemma 3

1
nhn

n∑
i=1

|1{|Di −WiΠ̂| ≤
hn

2
} − 1{|Di −WiΠ0| ≤

hn

2
}|||Si|| = op(1).

Proof: Note that

|1{|Ri(τ1)−W ′
i (Π̂−Π0)| ≤

hn

2
} − 1{|Ri(τ1)| ≤

hn

2
}|

≤ 1{−hn

2
≤ Ri(τ1) ≤ ||Wi||||Π̂−Π0|| −

hn

2
}+ 1{hn

2
≤ Ri(τ1) ≤ ||Wi||||Π̂−Π0||+

hn

2
}

+ 1{−hn

2
− ||Wi||||Π̂−Π0|| ≤ Ri(τ1) ≤ −hn

2
}+ 1{hn

2
− ||Wi||||Π̂−Π0|| ≤ Ri(τ1) ≤

hn

2
}

for sufficiently large n, because |W ′
i (Π̂ − Π0)| = op(hn). Since the four terms are similar, I only

consider the last one. Let δn be a (positive) sequence such that ||Π̂−Π0|| = op(δn) and δn = o(hn).

It then follows that |Wi||||Π̂−Π0|| ≤ ||Wi||δn with probability approaching to 1. I will show that

E
( 1
hn

1{hn

2
− ||Wi||δn ≤ Ri(τ1) ≤

hn

2
}||Si||

)
= o(1).

Note first that

E
( 1
hn

1{hn

2
− ||Wi||δn ≤ Ri(τ1) ≤

hn

2
}||Si||

)
≤ E

( 1
hn

1{hn

2
− ||Wi||δn ≤ Ri(τ1) ≤

hn

2
}|Di|

)
+ E

( 1
hn

1{hn

2
− ||Wi||δn ≤ Ri(τ1) ≤

hn

2
}||Xi||

)
.

Since the second term is similar, I only consider the first term. Note that

E
( 1
hn

1{hn

2
− ||Wi||δn ≤ Ri(τ1) ≤

hn

2
}|Di|

∣∣Wi

)
=

∫ 1
2

1
2
− δn

hn

|thn + W ′
iΠ0|fR(τ1)|W (thn|Wi)dt

≤ hn

∫ 1
2

1
2
− δn

hn

|t|fR(τ1)|W (thn|Wi)dt + |W ′
iΠ0|

∫ 1
2

1
2
− δn

hn

fR(τ1)|W (thn|Wi)dt → 0

with probability one. Applying dominated convergence theorem completes the proof. ���

Lemma 4 Let m̃n(Π, θ) = c′S(1{Y ≤ S′θ} − τ2)1{|D −W ′Π| ≤ hn
2 }

1√
hn

, where c is an arbitrary
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conformable vector and (Π, θ) ∈ (Π0 +N )×Θ. Then, for any sequence δ1n = o(hn) and δ2n = o(1),

sup||Π−Π̃||<δ1n,||θ−θ̃||<δ2n
E

(
(m̃n(Π, θ)− m̃n(Π̃, θ̃))2

)
= o(1).

Proof: Note that

(m̃n(Π, θ)− m̃n(Π̃, θ̃))2

≤ 2
(
(c′S)2

∣∣1{|D −W ′Π| ≤ hn

2
} − 1{|D −W ′Π̃| ≤ hn

2
}
∣∣ 1
hn

+ (c′S)2
∣∣1{Y ≤ S′θ} − 1{Y ≤ S′θ̃}

∣∣1{|D −W ′Π̃| ≤ hn

2
} 1
hn

)
. (14)

Since |W ′(Π− Π̃)| = op(hn), the first term in the right–hand side of (14) is bounded by

(c′S)2
(
1{W ′Π− hn

2
≤ D ≤ W ′Π̃− hn

2
}+ 1{W ′Π +

hn

2
≤ D ≤ W ′Π̃ +

hn

2
}

+ 1{W ′Π̃− hn

2
≤ D ≤ W ′Π− hn

2
}+ 1{W ′Π̃ +

hn

2
≤ D ≤ W ′Π +

hn

2
}
) 1

hn
.

Since all four terms are similar, I only consider the last one. Taking the expectation of the last

term yields

E
(
(c1D + c′2X)21{W ′Π̃ +

hn

2
≤ D ≤ W ′Π +

hn

2
} 1
hn

)
= E

(∫ W ′Π/hn+ 1
2

W ′Π̃/hn+ 1
2

(c1thn + c′2X)2fD|W (thn|W )dt
)
≤ C(Π, Π̃)

||Π− Π̃||
hn

,

where C(Π, Π̃) = E
(
sup(c1s+ c′2X)2fD|W (s|W )||W ||

)
with sup taken over s between W ′Π̃+ 1

2 and

W ′Π + 1
2 . Since sup(Π,Π̃)∈N×N C(Π, Π̃) < ∞, it follows that

sup
||Π−Π̃||<δ1n

C(Π, Π̃)
||Π− Π̃||

hn
= O(

δ1n

hn
) = o(1).

The second term of the right–hand side of (14) is similar and omitted. ���
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Lemma 5 For any sequence hn > 0 with hn ↓ 0, nhn →∞,

(i) supθ∈Θ ||M2n(Π̂, θ)−M2(Π0, θ)|| = op(1) as n →∞.

Moreover, if we let let rn =
√

nhδ
n such that δ > 0 and

√
nh1+δ

n → ∞, then for any sequences

δ1n ↓ 0 and δ2n ↓ 0 such that rnδ1n ↓ 0, we have

(ii) sup ||
√

nhn

(
M2n(Π, θ)− E

(
M2n(Π, θ)

))
−
√

nhn

(
M2n(Π0, θ0)− E

(
M2n(Π0, θ0)

))
|| = op(1)

as n →∞, where sup is taken over ||Π−Π0|| ≤ δ1n and ||θ − θ0|| ≤ δ2n.

Proof: Note first that

sup
θ
||M2n(Π̂, θ)−M2n(Π0, θ)||

≤ 1
nhn

n∑
i=1

||Si|||1{|Di −W ′
i Π̂| ≤

hn

2
} − 1{|Di −W ′

iΠ0| ≤
hn

2
}| = op(1)

by lemma 3. For part (i), I note that

sup
θ
||M2n(Π0, θ)−M2(Π0, θ)|| ≤ sup

(π,θ)∈N×Θ
||M2n(Π0 +

π

rn
, θ)−M2(Π0 +

π

rn
, θ)||

and I will show that the right–hand side is op(1) in the following discussion.

Consider the following class of functions

Fn = {mn(π, θ) = c′S(1{Y ≤ S′θ} − τ2)1{|R(τ1)−W ′ π

rn
| ≤ hn

2
} 1√

hn
: (Y, D, X, Z)× (π, θ) 7→ R},

where c is an arbitrary conformable vector and (π, θ) ∈ N ×Θ. Note that working with the local

parameter π is sufficient, because Π̂ is already
√

n–consistent for Π0.

Let µn(π, θ) = 1
nhn

∑n
i c′Si(1{Yi ≤ S′iθ} − τ2)1{|Ri(τ1)−W ′

i
π
rn
| ≤ hn

2 } and consider

Gnmn =
√

n(Pn − P )mn =
√

nhn

(
µn(π, θ)− E

(
µn(π, θ)

))
,

which is an empirical process with a sequential class of functions (see e.g., van der Vaart and

Wellner (1996, p220-221), van der Vaart (1998, p282)). In particular, corollary 19.35 and theorem
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19.28 of van der Vaart (1998) provide sufficient conditions for uniform convergence and stochastic

equicontinuity of Fn. Define π∗n(D,W ) = arg minπ∈N |R(τ1) − W ′ π
rn
|, and Fn has an envelope

function Fn = 2c′S1{|R(τ1)−W ′ π∗
n(D,W )

rn
| ≤ hn

2 }
1√
hn

. Since R(τ1)−W ′ π∗
n(D,W )

rn
has a density, the

standard change-of-variable technique shows

E(F 2
n) = O(1)

E(F 2
n1{Fn > ε

√
n}) = o(1) for every ε > 0,

where the second equality is because nhn → ∞. Therefore, in view of lemma 412, the uniform

entropy conditions of theorem 19.28 of van der Vaart (1998) will imply stochastic equicontinuity of

Gnmn and the uniform convergence of part (i) will follow from the maximal inequality.

To be more specific, let J(δ,Fn, L2) be the uniform entropy integral of Fn. Since corollary 19.35

of van der Vaart (1998)13 shows that

E(sup
π,θ

|Gnmn|) ≤ CJ(||Fn||2,Fn, L2)

for some constant C, J(||Fn||2,Fn, L2) = O(1) will imply that sup(π,θ) |Gnmn| = op(
√

nhn), which

will prove part (i) by lemma 1. Also, by theorem 19.28 of van der Vaart (1998), J(δn,Fn, L2) = o(1)

for every δn ↓ 0 will show stochastic equicontinuity of Gnmn(π, θ) so that

sup
||(π,θ)−(0,θ0)||≤δn

|Gnmn(π, θ)−Gnmn(0, θ0)| = op(1)

for any δn ↓ 0. It will then prove part (ii), because setting rn(Π−Π0) = π shows that the supremum

over ||Π−Π0|| ≤ δ1n is bounded by the supremum over ||π|| ≤ rnδ1n.

Therefore, showing J(||Fn||2,Fn, L2) = O(1) and J(δn,Fn, L2) = o(1) for every δn ↓ 0 will

complete the proof of the lemma. By definition of the uniform entropy integral, these two conditions

are satisfied when the ε–uniform covering number supQ N(ε||Fn||2,Fn, L2(Q)) is bounded by a

12Note that rnhn →∞.
13See also the comments on p289 of van der Vaart (1998). It is worth noting that the maximal inequality is not an

asymptotic one.
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polynomial of 1
ε that does not depend on n.14 A sufficient condition for this is that Fn is a Vapnik–

Cervonenkis (VC) class with its VC index not depending on n (see e.g. theorem 2.6.7 of van der

Vaart and Wellner (1996, hereafter VW)).

In the following four steps, I will show that the VC index of Fn is finite and that it does not

depend on n. VC indices will be denoted by V(·). First, I state a few useful properties of VC

indices, which are used in the following steps.

VC Properties: Let F and G be VC classes of sets. Let H be a VC class of functions, and let g

be an arbitraray fixed function. Then,

(i) I = {1A(x) : A ∈ F} is a VC class of functions with V(I) = V(F).

(ii) Fc = {Ac : A ∈ F} is a VC class of sets with V(Fc) = V(F).

(iii) F u G = {A ∩B : A ∈ F , B ∈ G} is a VC class of sets with V(F u G) ≤ V(F) + V(G)− 1.

(iv) The collection of all half–spaces in Rd is a VC class of sets of index d + 2. In particular,

{1{x′b ≤ c} : b ∈ Rd, c ∈ R} is a VC class of functions of index d + 2.

(v) H · g = {f · g : f ∈ H} is a VC class of functions with V(H · g) ≤ 2V(H)− 1.

These VC properties are now standard in empirical process theory, and their proofs can be

found in many places. See e.g. lemmas 2.6.17 and 2.6.18 of VW, and exercise 14 on page 152 of

VW. Using these properties, the following four steps prove that the VC index of Fn is finite and

that it does not depend on n.

Step 1: Let C = {fA,B(x) = 1A∩B(x)− τ11B(x) : A ∈ F , B ∈ G}, where F and G are VC classes

of sets. Then, V(C) ≤ 2
(
V(F) + 2V(G)− 2

)
.

To prove this, suppose that a collection {(x1, t1), (x2, t2), ...., (xk, tk)} is shattered by the col-

lection of subgraphs of C. Then, there should not be any tj less than −τ1 or larger than 1 − τ1.

Moreover, this collection can be partitioned into two groups. Those points whose tj is between 1−τ1

and 0 will be shattered by the collection of subgraphs of C1 = {(1 − τ1)1A∩B(x) : A ∈ F , B ∈ G}.

Similarly, those points whose tj is between 0 and −τ1 will be shattered by the collection of sub-

graphs of C2 = {−τ11B∩(A∩B)c(x) : A ∈ F , B ∈ G}. It then follows that V(C) ≤ V(C1) + V(C2).

Now, the conclusion of step 1 follows from the VC properties (i), (iii), and (v) above.
14Since the ε–uniform covering number cannot increase as ε becomes larger, it is in fact sufficient to consider

0 < ε < 1.

QQ-080520 29



D Proof of Theorem 1

Step 2: Let Dn = {1{|R(τ1) −W ′ π
rn
| ≤ hn

2 } : π ∈ Rkx+kz}, D− = {1{R(τ1) ≤ W ′Π + h} : Π ∈

Rkx+kz , h ∈ R}, and D+ = {1{R(τ1) ≥ W ′Π − h} : Π ∈ Rkx+kz , h ∈ R}. Then, for every n,

V(Dn) ≤ V(D−) + V(D+)− 1.

Note first that Dn = {1{|R(τ1)−W ′ π
rn
| ≤ hn

2 } : π ∈ Rkx+kz} is a subclass of D∗ = {1{|R(τ1)−

W ′Π| ≤ h} : Π ∈ Rkx+kz , h ∈ R} for every n. Note also that D− and D+ are VC classes by the VC

property (iv) above. It then follows that V(Dn) ≤ V(D∗) ≤ V(D−) + V(D+)− 1, where the second

inequality is due to the VC property (iii) above.

Step 3: Let F∗
n = {(1{Y ≤ S′θ} − τ1)1{|R(τ1) − W ′ π

rn
| ≤ hn

2 } : π ∈ Rkz+kx , θ ∈ R1+kx}, and

E = {(1{Y ≤ S′θ} − τ1) : θ ∈ R1+kx}. Then, V(F∗
n) ≤ 2

(
V(E) + 2V(D−) + 2V(D+)− 4

)
for every

n.

It follows from steps 1 and 2, because (1A − τ1)1B = 1A∩B − τ11B.

Step 4: Fn is a VC class, and its VC index does not depend on n.

By the VC property (v) above, V(Fn) ≤ 2V(F∗
n) − 1. Therefore, it follows from step 3 that

V(Fn) ≤ 4
(
V(E) + 2V(D−) + 2V(D+) − 4

)
− 1 for all n. Lastly, note that E ,D−,D+ are all VC

classes and they do not depend on n. ���

Lemma 6 As n →∞, hn ↓ 0, nhn →∞,

Υn,hn

(
Mn(Π0, θ0)− E

(
Mn(Π0, θ0)

)) d→ N
( 0

0

 ,

 V11 0

0 V22

)
,

where V11 = E(WiW
′
i |Ri(τ1) = 0)fR(τ1)(0) and V22 = τ2(1− τ2)E(SiS

′
i|Ri(τ1) = 0)fR(τ1)(0).

Remark: Since R(τ1) has a conditional density given W , V11 = E
(
WiW

′
ifR(τ1)|W (0|Wi)

)
, which

is a more common expression in the quantile literature (e.g. Koenker (2005)). If R(τ1) has a

density conditional on S, which requires that there is at least one continuous instrument, then

V22 = τ2(1− τ2)E
(
SiS

′
ifR(τ1)|S(0|Si)

)
.
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Proof: For any (conformable) vectors c, d, consider

Sn =
[c′ : d′] Υn,hn

(
Mn(Π0, θ0)− E

(
Mn(Π0, θ0)

))√
V ar

(
[c′ : d′] Υn,hn

(
Mn(Π0, θ0)− E

(
Mn(Π0, θ0)

))) .

By the Cramer-Wold device, it suffices to show that

Sn
d→ N(0, 1) (15)

V ar

(
Υn,hn

(
Mn(Π0, θ0)− E

(
Mn(Π0, θ0)

)))
→

 V11 0

0 V22

 . (16)

Part (16) follows from direct computation, and will be omitted here.

For part (15), write

Nn =
[
c′ : d′

]
Υn,hn

(
Mn(Π0, θ0)− E

(
Mn(Π0, θ0)

))
=

n∑
i=1

c′Wim1i√
n

+
d′Sim2ikin√

nhn
,

where m1i = 1{Di ≤ W ′
iΠ0} − τ1, m2i = 1{Yi ≤ S′iθ0} − τ2, and kin = 1{|Di −WiΠ0| ≤ hn

2 }. By

the Liapounov central limit theorem (see e.g., Pagan and Ullah (1999, p 358)), it suffices to shows

that
n∑
i

E
(∣∣c′Wim1i

sn
√

n
+

d′Sim2ikin

sn

√
nhn

∣∣2+δ) = o(1),

for some δ > 0, where s2
n = V ar(Nn). By the Cr inequality,15

n∑
i

E
(∣∣c′Wim1i

sn
√

n
+

d′Sim2ikin

sn

√
nhn

∣∣2+δ) ≤ C
n∑
i

E
(∣∣c′Wim1i

sn
√

n

∣∣2+δ +
∣∣d′Sim2ikin

sn

√
nhn

∣∣2+δ)
≤ C

(ns2
n)1+δ/2

n∑
i

E
(∣∣c′Wim1i

∣∣2+δ) +
C

(nhns2
n)1+δ/2

n∑
i

E
(∣∣d′Sim2ikin

∣∣2+δ)
,

15See e.g. Davidson (1994, p 140).
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where C is a constant. In view of part (16), s2
n is convergent to a positive number, and hence it

futher follows that

C

(ns2
n)1+δ/2

n∑
i

E
(∣∣c′Wim1i

∣∣2+δ) +
C

(nhns2
n)1+δ/2

n∑
i

E
(∣∣d′Sim2ikin

∣∣2+δ)
≤ 1

n1+δ/2
O(n) +

1
(nhn)1+δ/2

O(nhn) = o(1),

where δ is chosen to satisfy assumption H. ���

Lemma 7 Let the Jacobian of M(Π, θ) evaluated at Π0 and θ0 be given by Γ =

 Γ11 0

Γ21 Γ22

.

Then, Γ11 = E
(
WiW

′
ifR(τ1)|W (0|Wi)

)
, and Γ22 = E

(
SiS

′
ifε(τ1,τ2)|R(τ1),S(0|Ri(τ1), Si)|Ri(τ1) =

0
)
fR(τ1)(0).

Proof: Γ11 and Γ22 follows from direct calculation, and it will be omitted here. ���

Remark: Let T (Di,Wi) = E
(
Si(1{ε(τ1, τ2) ≤ 0} − τ2)|Di,Wi

)
, and assume that T (Di,Wi) is

twice continuously differentiable with respect to Di. Then, differentiability of M(Π, θ) at Π0 and

θ0 follows. To see this, consider Γ21. For each Π ∈ Π0 +N ,

E
(
T (Di,Wi)1{|Di −W ′

iΠ| ≤
hn

2
} 1
hn

)
→ E

(
T (Di,Wi)|Di −W ′

iΠ = 0
)
fDi−W ′

iΠ
(0)

= E
(
Si(1{ε(τ1, τ2) ≤ 0} − τ2)|Di −W ′

iΠ = 0
)
fDi−W ′

iΠ
(0) = M2(Π, θ0). (17)

Therefore, it suffices to show that the derivatives of the left–hand side of (17) uniformly converges

over Π0 +N . Note that

E
(
T (Di,Wi)1{|Di −W ′

iΠ| ≤
hn

2
} 1
hn
|Wi

)
=

∫
T (t, Wi)1{|t−W ′

iΠ| ≤
hn

2
} 1
hn

fD|W (t|Wi)dt

=
∫ 1/2

−1/2
T (thn + W ′

iΠ,Wi)fD|W (thn + W ′
iΠ|Wi)dt,
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which has a derivative

∫ 1/2

−1/2
WiTD(thn + W ′

iΠ,Wi)fD|W (thn + W ′
iΠ|Wi) + WiT (thn + WiΠ,Wi)f ′D|W (thn + W ′

iΠ|Wi)dt,

(18)

where TD denotes the derivative of T (Di,Wi) with respect to Di. Since Π0+N is compact, uniform

convergence of (18) follows from cotinuous differentiability of TD and f ′D|W (s|Wi). ���

Remark: Γ21 = E
(
WiTD(W ′

iΠ0,Wi)fD|W (W ′
iΠ0|Wi) + WiT (WiΠ0,Wi)f ′D|W (W ′

iΠ0|Wi)
)
. In

fact, if R(τ1) has a conditional density given Yi, Si, which is the case when there is at least one

continuous instrument, it is simply Γ21 = E
(
SiW

′
i (1{Yi ≤ S′iθ0}− τ2)f ′R(τ1)|Y,S(0|Yi, Si)

)
. Similarly,

Γ22 can be written as E
(
SiS

′
ifR(τ1),ε(τ1,τ2)|S(0, 0|Si)

)
in that case.

Lemma 8
√

nhn(θ̂ − θ0) = Op(1) + O(
√

nhnh2
n).

Proof: Since

sup
θ∈Θ

||M2n(Π̂, θ)−M2(Π0, θ)|| = op(1) (19)

by lemma 5, consistency of θ̂ follows from the standard arguments. Choose an arbitrary δ > 0.

Then, continuity of M2(Π0, θ) and the compact parameter space guarantees that there is some

θ∗ ∈ {θ ∈ Θ : ||θ− θ0|| ≥ δ} such that inf ||θ−θ0||≥δ ||M2(Π0, θ)|| = ||M2(Π0, θ
∗)||. Since M2(Π0, θ) is

equal to 0 uniquly at θ0, it follows that inf ||θ−θ0||≥δ ||M2(Π0, θ)|| ≥ ε for some ε > 0. It then follows

that Pr(||θ̂ − θ0|| ≥ δ) ≤ Pr(||M2(Π0, θ̂)|| ≥ ε). Now, note that

||M2(Π0, θ̂)|| ≤ sup ||M2n(Π̂, θ)−M2(Π0, θ)||+ ||M2n(Π̂, θ̂)|| = op(1),

where the last equality is due to equations (10) and (19). Therefore, ||θ̂ − θ0|| = op(1).
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To establish the convergence rate, let δ2n ↓ 0 be an arbitrary sequence and let δ1n ↓ 0 be a

sequence satisfying the conditions of lemma 5. It then follows from lemma 5 that

sup ||
√

nhn

(
M2n(Π, θ)−M2(Π, θ)

)
−

√
nhn

(
M2n(Π0, θ0)−M2(Π0, θ0)

)
||

≤ sup ||
√

nhn

(
M2n(Π, θ)− E

(
M2n(Π, θ)

))
−

√
nhn

(
M2n(Π0, θ0)− E

(
M2n(Π0, θ0)

))
||

+ 2
√

nhn sup ||E
(
M2n(Π, θ)

)
−M2(Π, θ)|| = op(1) + O(

√
nhnh2

n), (20)

where sup is taken over ||Π−Π0|| < δ1n and ||θ − θ0|| < δ2n; for the last equality, I used lemma 1.

Since Π̂ is
√

n–consistent and θ̂ is consistent, there exist some sequences δ1n ↓ 0 and δ2n ↓ 0 such

that

||
√

nhnM2(Π̂, θ̂)|| ≤ ||
√

nhn

(
M2n(Π̂, θ̂)−M2(Π̂, θ̂)

)
||+ ||

√
nhnM2n(Π̂, θ̂)||

≤ sup ||
√

nhn

(
M2n(Π, θ)−M2(Π, θ)

)
||+ op(1)

≤ sup ||
√

nhn

(
M2n(Π, θ)−M2(Π, θ)

)
−

√
nhnM2n(Π0, θ0)||+ ||

√
nhnM2n(Π0, θ0)||+ op(1)

= op(1) + O(
√

nhnh2
n) + Op(1) + op(1)

with probability approaching to 1, where sup is taken over ||Π− Π0|| < δ1n and ||θ − θ0|| < δ2n.16

Therefore,

O(h2
n) + Op(

1√
nhn

) = ||M2(Π̂, θ̂)|| = ||Γ21(Π̂−Π0) + Γ22(θ̂ − θ0) + O(||Π̂−Π0||||θ̂ − θ0||)||

= ||Γ22(θ̂−θ0)+Op(
1√
n

)+Op(
||θ̂ − θ0||√

n
)|| ≥ ||Γ22(θ̂−θ0)||−Op(

1√
n

) ≥
√

λ2||θ̂−θ0||−Op(
1√
n

),

where λ2 is the smallest eigenvalue of Γ′22Γ22. Since the full rank of Γ22 implies that λ2 > 0, it

follows that
√

nhn||θ̂ − θ0|| = Op(1) + O(
√

nhnh2
n) + Op(

√
hn). ���

Proposition 3 The proposed estimators have the asymptotic expansion of theorem 1.
16Any δ1n ↓ 0 satisfying

√
nδ1n →∞ and rnδ1n → 0 will do, where rn is defined in lemma 5.
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Proof: Since the asymptotic expansion of Π̂(τ1) follows from standard quantile regression, its proof

will be omitted and I only consider θ̂(τ1, τ2) here. In the following proof, the asymptotic expansion
√

n(Π̂−Π0) = Γ11M1n(Π0) + op(1) will be taken for granted.

From differentiability of M2(Π, θ), consider the expansion

M2(Π, θ) = Γ21(Π−Π0) + Γ22(θ − θ0) + O(||Π−Π0||||θ − θ0||).

Define

L2n(θ) = Γ22(θ − θ0) + M2n(Π0, θ0).

Then,

M2n(Π, θ) = M2(Π, θ) +
(
M2n(Π, θ)−M2(Π, θ)

)
= L2n(θ) +

(
M2n(Π, θ)−M2(Π, θ)

)
−M2n(Π0, θ0) + O(||Π−Π0||) + O(||Π−Π0||||θ − θ0||)

= L2n(θ) +
(
M2n(Π, θ)− E

(
M2n(Π, θ)

)
−M2n(Π0, θ0) + E

(
M2n(Π0, θ0)

))
+ E

(
M2n(Π, θ)

)
−M2(Π, θ)− E

(
M2n(Π0, θ0) + O(||Π−Π0||) + O(||Π−Π0||||θ − θ0||). (21)

In fact, equation (21) shows that M2n(Π, θ) is decomposed into four different components; the linear

term L2n(θ), the stochastic equicontinuity term
(
M2n(Π, θ) − E

(
M2n(Π, θ)

))
−

(
M2n(Π0, θ0) −

E
(
M2n(Π0, θ0)

))
, the bias term

(
E

(
M2n(Π, θ)

)
−M2(Π, θ)

)
− E

(
M2n(Π0, θ0)

)
, and the remainer

term. Therefore, for any estimator θn such that
√

nhn(θn − θ0) = Op(1),

√
nhn||M2n(Π̂, θn)− L2n(θn)|| ≤

√
nhn||

(
M2n(Π̂, θn)−M2(Π̂, θn)

)
−M2n(Π0, θ0)||+ Op(

√
hn)

≤ sup
√

nhn||
(
M2n(Π, θ)−M2(Π, θ)

)
−M2n(Π0, θ0)||+ op(1) = O(

√
nhnh2

n) + op(1),

where sup is taken over ||Π − Π0|| < δ1n and ||θ − θ0|| < δ2n for some sequences δ1n ↓ 0 and

δ2n ↓ 0; the second inequality holds with probability approaching to 1 due to consistency, and the
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last equality is by equation (20). In particular, undersmoothing ensures that

√
nhn||M2n(Π̂, θn)− L2n(θn)|| = op(1). (22)

Now, consider an (infeasible) estimator θ̃ such that

θ̃ − θ0 = arg min
θ∈R1+kx

||L2n(θ)|| = −Γ−1
22 M2n(Π0, θ0).

Note here that although I minimized over R1+kx , θ̃− θ0 will belong to Θ as n increases, because θ0

is in the interior of Θ. In the following, I will show that θ̂ is distributionally equivalent to θ̃. First,

note that
√

nhn(θ̂ − θ0) = Op(1) and
√

nhn(θ̃ − θ0) = Op(1). Therefore, by equation (22),

√
nhn||L2n(θ̂)|| =

√
nhn||M2n(Π̂, θ̂)||+ op(1) = op(1).

Now, note that L2n(θ̂) = L2n(θ̃) + Γ22(θ̂ − θ̃) by definition, where L2n(θ̃) is in fact equal to 0.

Therefore, it follows that

op(1) =
√

nhn||Γ22(θ̂− θ̃)|| ≥
√

nhn

√
λ2||(θ̂− θ̃)|| ≥

√
λ2

∣∣||√nhn(θ̂− θ0)||− ||
√

nhn(θ̃− θ0)||
∣∣,

where λ2 > 0 is the smallest eigenvalue of Γ′22Γ22. Therefore,

√
nhn(θ̂ − θ0) =

√
nhn(θ̃ − θ0) + op(1),

which completes the proof. ���

E Proof of Proposition 2

Proposition 2 follows from lemmas 9 and 10. ���
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Lemma 9

1
nb1n

n∑
i=1

SiS
′
ik

(−R̂i(τ1)
b1n

)
=

1
nb1n

n∑
i=1

SiS
′
ik

(−Ri(τ1)
b1n

)
+ op(1),

1
nb2

2n

n∑
i=1

SiS
′
ik

(−R̂i(τ1)
b2n

)
k
(−ε̂i(τ1, τ2)

b2n

)
=

1
nb2

2n

n∑
i=1

SiS
′
ik

(−Ri(τ1)
b2n

)
k
(−εi(τ1, τ2)

b2n

)
+ op(1).

Proof: Since two statements are similar, we only prove the second one. Let ∆1 = Π− Π0, ∆2 =

θ − θ0 and ∆̂1 = Π̂−Π0, ∆̂2 = θ̂ − θ0. By the mean value theorem, we can write

1
nb2

2n

n∑
i=1

SiS
′
ik

(−R̂i(τ1)
b2n

)
k
(−ε̂i(τ1, τ2)

b2n

)
=

1
nb2

2n

n∑
i=1

SiS
′
ik

(−Ri(τ1)
b2n

)
k
(−εi(τ1, τ2)

b2n

)
+

1
nb2

2n

n∑
i=1

SiS
′
ik
′(W ′

i ∆̃1 −Ri(τ1)
b2n

)
k
(−εi(τ1, τ2)

b2n

)W ′
i ∆̂1

b2n

+
1

nb2
2n

n∑
i=1

SiS
′
ik

(−Ri(τ1)
b2n

)
k′

(S′i∆̃2 − εi(τ1, τ2)
b2n

)S′i∆̂2

b2n

+
1

nb2
2n

n∑
i=1

SiS
′
ik
′(W ′

i ∆̃1 −Ri(τ1)
b2n

)
k′

(S′i∆̃2 − εi(τ1, τ2)
b2n

)W ′
i ∆̂1

b2n

S′i∆̂2

b2n
(23)

for some ∆̃1 and ∆̃2.

We claim that the last three terms in (23) are all op(1), which easily follows from the stronger

bandwidth requirements when Wi has unbounded support. Therefore, we only consider the case

where b1n, b2n satisfy the weaker bandwidth requirements but Wi has bounded support.

Consider the last term in (23) since the other two terms are easier. Since || ∆̂1
b2n
|| = Op( 1√

nb2n
) =

op(1) and ∆̂2
b2n

= Op( 1√
nhnb2n

) = op(1), for some sequence δn ↓ 0, we have

|| 1
nb2

2n

n∑
i=1

SiS
′
ik
′(W ′

i ∆̃1 −Ri(τ1)
b2n

)
k′

(S′i∆̃2 − εi(τ1, τ2)
b2n

)W ′
i ∆̂1

b2n

S′i∆̂2

b2n
||

≤ sup
|| ∆̂1

b2n
||≤δn, || ∆̂2

b2n
||≤δn

|| 1
nb2

2n

n∑
i=1

SiS
′
ik
′(W ′

i ∆̃1 −Ri(τ1)
b2n

)
k′

(S′i∆̃2 − εi(τ1, τ2)
b2n

)W ′
i ∆̂1

b2n

S′i∆̂2

b2n
||

≤ 1
nb2

2n

n∑
i=1

||Si||3||Wi|| sup
|t|≤||Wi||δn

|k′
(−Ri(τ1)

b2n
+ t

)
| sup
|t|≤||Si||δn

|k′
(−εi(τ1, τ2)

b2n
+ t

)
|δ2

n
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with probability approaching to 1. Note here that

1
nb2

2n

n∑
i=1

||Si||3||Wi|| sup
|t|≤||Wi||δn

|k′
(−Ri(τ1)

b2n
+ t

)
| sup
|t|≤||Si||δn

|k′
(−εi(τ1, τ2)

b2n
+ t

)
|

≤ C
1

nb2
2n

n∑
i=1

||Si||3 sup
|t|≤Cδn

|k′
(−Ri(τ1)

b2n
+ t

)
| sup
|t|≤||Si||δn

|k′
(−εi(τ1, τ2)

b2n
+ t

)
| (24)

for some C > 0, because Wi has bounded support. Therefore, it suffices to shows that the RHS in

(24) is Op(1). Note here that

sup
|t|≤Cδn

|k′
(−Ri(τ1)

b2n
+ t

)
|

= max
cj∈S

(
|k′(cj)|1{|cj +

Ri(τ1)
b2n

| < Cδn}, |k′(
−Ri(τ1)

b2n
+ Cδn)|, |k′(−Ri(τ1)

b2n
− Cδn)|

)
and that

sup
|t|≤||Si||δn

|k′
(−εi(τ1, τ2)

b2n
+ t

)
|

= max
cj∈S

(
|k′(cj)|1{|cj+

εi(τ1, τ2)
b2n

| < ||Si||δn}, |k′(
−εi(τ1, τ2)

b2n
+||Si||δn)|, |k′(−εi(τ1, τ2)

b2n
−||Si||δn)|

)
.

Therefore, plugging in these expressions to the RHS of (24), taking expectations, and using the

usual change of variables technique finishes the proof. ���

Lemma 10 If εi(τ1, τ2) and Ri(τ1) have a joint density conditional on Si (e.g. when there is at

least one continuous instrument),

1
nb1n

n∑
i=1

SiS
′
ik

(−Ri(τ1)
b1n

)
= E

(
SiS

′
ifR(τ1)|S(0|Si)

)
+ op(1),

1
nb2

2n

n∑
i=1

SiS
′
ik

(−Ri(τ1)
b2n

)
k
(−εi(τ1, τ2)

b2n

)
= E

(
SiS

′
ifR(τ1),ε(τ1,τ2)|S(0, 0|Si)

)
+ op(1).
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Proof: Since the two statements are similar, we only consider the second one. Note first that

1
nb2

2n

n∑
i=1

SiS
′
ik

(−Ri(τ1)
b2n

)
k
(−εi(τ1, τ2)

b2n

)
= E

( 1
b2
2n

SiS
′
ik

(−Ri(τ1)
b2n

)
k
(−εi(τ1, τ2)

b2n

))
+Op(

1√
nb2n

),

(25)

because letting ξtsi be the t–s element of SiS
′
i, squaring and taking expectations yields

1
nb2

2n

E
(
ξ2
tsik

(−Ri(τ1)
b2n

)2
k
(−εi(τ1, τ2)

b2n

)2 1
b2
2n

)
=

1
nb2

2n

E
(
ξ2
tsi

∫
k
(−r

b2n

)2
k
(−e

b2n

)2 1
b2
2n

fR(τ1),ε(τ1,τ2)|S(r, e|Si)drde
)

=
1

nb2
2n

E
(
ξ2
tsi

∫
k(t)2k(s)2fR(τ1),ε(τ1,τ2)|S(−b2nt,−b2ns|Si)dtds

)
= O(

1
nb2

2n

).

Therefore, I only consider the expectation in the RHS of equation (25).

E
( 1

b2
2n

SiS
′
ik

(−Ri(τ1)
b2n

)
k
(−εi(τ1, τ2)

b2n

))
= E

(
SiS

′
i

∫
k(t)k(s)fR(τ1),ε(τ1,τ2)|S(−b2nt,−b2ns|Si)dtds

)
= E

(
SiS

′
ifR(τ1),ε(τ1,τ2)|S(0, 0|Si)

) ∫
k(t)dt

∫
k(s)ds

+ b2nE
(
SiS

′
i

∫
k(t)k(s)

(
tD1fR(τ1),ε(τ1,τ2)|S(t̄, s̄|Si) + sD2fR(τ1),ε(τ1,τ2)|S(t̄, s̄|Si)

)
dtds

)
,

where DjfR(τ1),ε(τ1,τ2)|S is the partial derivative with respect to the jth argument and t̄, s̄ denote

the mean values. Since supt,s |DjfR(τ1),ε(τ1,τ2)|S(t, s|Si)| ≤ φ(Si), we have

b2n||E
(
SiS

′
i

∫
k(t)k(s)

(
tD1fR(τ1),ε(τ1,τ2)|S(t̄, s̄|Si) + sD2fR(τ1),ε(τ1,τ2)|S(t̄, s̄|Si)

)
dtds

)
||

≤ b2nE
(
||Si||2φ(Si)

∫
|k(t)||k(s)|(|t|+ |s|)dtds

)
= o(1). ���
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Table I: Experiments using the Angrist and Krueger data

p-values of the significance of instruments in the first stage quantile regression

τ1 = 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

σ = 0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.2641 0.3110 0.3792 0.1254

σ = 0.02 0.0000 0.0000 0.0000 0.0000 0.0000 0.0031 0.1060 0.1550 0.0111

σ = 0.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σ = 0.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

σ = 0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

τ1 = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

σ = 0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.8133 0.9997 0.0000 0.0000

σ = 0.02 0.0000 0.0000 0.0000 0.0000 0.0000 0.5650 0.9840 0.0014 0.0000

σ = 0.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.4630 0.9400 0.0020 0.0000

σ = 0.04 0.0000 0.0000 0.0000 0.0001 0.0000 0.3775 0.6384 0.0028 0.0000

σ = 0.05 0.0000 0.0000 0.0000 0.0021 0.0000 0.3010 0.4350 0.0173 0.0000

Note

H0: Π2(τ1) = 0, where QD∗
i |Xi,Zi

(τ1) = X ′
iΠ1(τ1) + Z ′

iΠ2(τ1) with D∗
i = Di + εi.

Di is the education variable of the Angrist–Krueger data, and εi is a random noise from N(0, σ2).

Xi contains 10 dummies indicating birth-years.

Zi contains 30 instruments of birth-quarters interacted with birth-years.
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Figure I: Experiments using the Angrist and Krueger data

Point Estimates of α(τ1, τ2) with σ = 0.01 Confidence Intervals for α(0.20, τ2) with σ = 0.01

Point Estimates of α(τ1, τ2) with σ = 0.02 Confidence Intervals for α(0.20, τ2) with σ = 0.02

Note:

QYi|Zi,Xi,Vi=τ1(τ2) = QD∗
i |Zi,Xi

(τ1)α(τ1, τ2) + X ′
iβ(τ1, τ2), where D∗

i = Di + εi.

εi ∼ N(0, σ2) is the same as those used in Table I.

Yi is the log wage variable of the Angrist–Krueger data.
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